1. Protein function prediction via graph kernels
2. Nathan de Lara and Edouard Pineau. 2018. A simple baseline algorithm for graph classification. arXiv preprint arXiv:1810.09155 (2018). Nathan de Lara and Edouard Pineau. 2018. A simple baseline algorithm for graph classification. arXiv preprint arXiv:1810.09155 (2018).
3. David K Duvenaud Dougal Maclaurin Jorge Iparraguirre Rafael Bombarell Timothy Hirzel Alán Aspuru-Guzik and Ryan P Adams. 2015. Convolutional networks on graphs for learning molecular fingerprints. In Advances in neural information processing systems. 2224--2232. David K Duvenaud Dougal Maclaurin Jorge Iparraguirre Rafael Bombarell Timothy Hirzel Alán Aspuru-Guzik and Ryan P Adams. 2015. Convolutional networks on graphs for learning molecular fingerprints. In Advances in neural information processing systems. 2224--2232.
4. Kristian Kersting Nils M Kriege Christopher Morris Petra Mutzel and Marion Neumann. 2016. Benchmark data sets for graph kernels 2016. URL http://graphkernels. cs. tu-dortmund. de Vol. 795 (2016). Kristian Kersting Nils M Kriege Christopher Morris Petra Mutzel and Marion Neumann. 2016. Benchmark data sets for graph kernels 2016. URL http://graphkernels. cs. tu-dortmund. de Vol. 795 (2016).
5. Annamalai Narayanan Mahinthan Chandramohan Rajasekar Venkatesan Lihui Chen Yang Liu and Shantanu Jaiswal. 2017. graph2vec: Learning distributed representations of graphs. arXiv preprint arXiv:1707.05005 (2017). Annamalai Narayanan Mahinthan Chandramohan Rajasekar Venkatesan Lihui Chen Yang Liu and Shantanu Jaiswal. 2017. graph2vec: Learning distributed representations of graphs. arXiv preprint arXiv:1707.05005 (2017).