1. Sami Abu-El-Haija , Amol Kapoor , Bryan Perozzi , and Joonseok Lee . 2020 . N-gcn: Multi-scale graph convolution for semi-supervised node classification. In uncertainty in artificial intelligence. PMLR, 841–851. Sami Abu-El-Haija, Amol Kapoor, Bryan Perozzi, and Joonseok Lee. 2020. N-gcn: Multi-scale graph convolution for semi-supervised node classification. In uncertainty in artificial intelligence. PMLR, 841–851.
2. Martin Arjovsky Léon Bottou Ishaan Gulrajani and David Lopez-Paz. 2019. Invariant risk minimization. arXiv preprint arXiv:1907.02893(2019). Martin Arjovsky Léon Bottou Ishaan Gulrajani and David Lopez-Paz. 2019. Invariant risk minimization. arXiv preprint arXiv:1907.02893(2019).
3. Shiyu Chang , Yang Zhang , Mo Yu , and Tommi Jaakkola . 2020 . Invariant rationalization . In International Conference on Machine Learning. PMLR, 1448–1458 . Shiyu Chang, Yang Zhang, Mo Yu, and Tommi Jaakkola. 2020. Invariant rationalization. In International Conference on Machine Learning. PMLR, 1448–1458.
4. Measuring and Relieving the Over-Smoothing Problem for Graph Neural Networks from the Topological View
5. Molecularly imprinted polymers: synthesis and characterisation;Cormack AG;Journal of chromatography B,2004