VeriGen: A Large Language Model for Verilog Code Generation

Author:

Thakur Shailja1ORCID,Ahmad Baleegh1ORCID,Pearce Hammond2ORCID,Tan Benjamin3ORCID,Dolan-Gavitt Brendan1ORCID,Karri Ramesh1ORCID,Garg Siddharth1ORCID

Affiliation:

1. New York University, New York, USA

2. University of New South Wales, Sydney, Australia

3. University of Calgary, Calgary, Canada

Abstract

In this study, we explore the capability of Large Language Models (LLMs) to automate hardware design by automatically completing partial Verilog code, a common language for designing and modeling digital systems. We fine-tune pre-existing LLMs on Verilog datasets compiled from GitHub and Verilog textbooks. We evaluate the functional correctness of the generated Verilog code using a specially designed test suite, featuring a custom problem set and testing benches. Here, our fine-tuned open-source CodeGen-16B model outperforms the commercial state-of-the-art GPT-3.5-turbo model with a 1.1% overall increase. Upon testing with a more diverse and complex problem set, we find that the fine-tuned model shows competitive performance against state-of-the-art gpt-3.5-turbo, excelling in certain scenarios. Notably, it demonstrates a 41% improvement in generating syntactically correct Verilog code across various problem categories compared to its pre-trained counterpart, highlighting the potential of smaller, in-house LLMs in hardware design automation. We release our training/evaluation scripts and LLM checkpoints as open-source contributions.

Funder

NSF

ARO

Publisher

Association for Computing Machinery (ACM)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Chain-of-Descriptions: Improving Code LLMs for VHDL Code Generation and Summarization;Proceedings of the 2024 ACM/IEEE International Symposium on Machine Learning for CAD;2024-09-09

2. Human Language to Analog Layout Using GLayout Layout Automation Framework;Proceedings of the 2024 ACM/IEEE International Symposium on Machine Learning for CAD;2024-09-09

3. The potential of LLMs in hardware design;Journal of Engineering Research;2024-08

4. Hardware Trojan Dataset of RISC-V and Web3 Generated with ChatGPT-4;Data;2024-06-19

5. Investigation and Implementation of AI-HDLCoder for Automated VHDL Code Synthesis and Code Generation for Hardware SoC Development;2024 35th Irish Signals and Systems Conference (ISSC);2024-06-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3