Mining Event-Oriented Topics in Microblog Stream with Unsupervised Multi-View Hierarchical Embedding

Author:

Peng Min1,Zhu Jiahui1,Wang Hua2,Li Xuhui1,Zhang Yanchun2,Zhang Xiuzhen3,Tian Gang1

Affiliation:

1. Wuhan University, Wuhan, China

2. Victoria University, Melbourne, Australia

3. RMIT University

Abstract

This article presents an unsupervised multi-view hierarchical embedding (UMHE) framework to sufficiently reveal the intrinsic topical knowledge in social events. Event-oriented topics are highly related to such events as it can provide explicit descriptions of what have happened in social community. In many real-world cases, however, it is difficult to include all attributes of microblogs, more often, textual aspects only are available. Traditional topic modelling methods have failed to generate event-oriented topics with the textual aspects, since the inherent relations between topics are often overlooked in these methods. Meanwhile, the metrics in original word vocabulary space might not effectively capture semantic distances. Our UMHE framework overcomes the severe information deficiency and poor feature representation. The UMHE first develops a multi-view Bayesian rose tree to preliminarily generate prior knowledge for latent topics and their relations. With such prior knowledge, we design an unsupervised translation-based hierarchical embedding method to make a better representation of these latent topics. By applying self-adaptive spectral clustering on the embedding space and the original space concomitantly, we eventually extract event-oriented topics in word distributions to express social events. Our framework is purely data-driven and unsupervised, without any external knowledge. Experimental results on TREC Tweets2011 dataset and Sina Weibo dataset demonstrate that the UMHE framework can construct hierarchical structure with high fitness, but also yield topic embeddings with salient semantics; therefore, it can derive event-oriented topics with meaningful descriptions.

Funder

Natural Science Foundation of Hubei Province, China

Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3