Lifecycle Modeling for Buzz Temporal Pattern Discovery

Author:

Chang Yi1,Yamada Makoto2,Ortega Antonio3,Liu Yan3

Affiliation:

1. Yahoo Research, Sunnyvale, CA

2. Kyoto University, Kyoto, Japan

3. University of Southern California, Los Angeles, CA

Abstract

In social media analysis, one critical task is detecting a burst of topics or buzz , which is reflected by extremely frequent mentions of certain keywords in a short-time interval. Detecting buzz not only provides useful insights into the information propagation mechanism, but also plays an essential role in preventing malicious rumors. However, buzz modeling is a challenging task because a buzz time-series often exhibits sudden spikes and heavy tails, wherein most existing time-series models fail. In this article, we propose novel buzz modeling approaches that capture the rise and fade temporal patterns via Product Lifecycle (PLC) model, a classical concept in economics. More specifically, we propose to model multiple peaks in buzz time-series with PLC mixture or PLC group mixture and develop a probabilistic graphical model (K-Mixture of Product Lifecycle ( K-MPLC ) to automatically discover inherent lifecycle patterns within a collection of buzzes. Furthermore, we effectively utilize the model parameters of PLC mixture or PLC group mixture for burst prediction. Our experimental results show that our proposed methods significantly outperform existing leading approaches on buzz clustering and buzz-type prediction.

Funder

MEXT KAKENHI

NSF research

U.S. Defense Advanced Research Projects Agency (DARPA) under the Social Media in Strategic Communication (SMISC) program

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference44 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3