Feature-based surface parameterization and texture mapping

Author:

Zhang Eugene1,Mischaikow Konstantin1,Turk Greg1

Affiliation:

1. Georgia Institute of Technology, Atlanta, GA

Abstract

Surface parameterization is necessary for many graphics tasks: texture-preserving simplification, remeshing, surface painting, and precomputation of solid textures. The stretch caused by a given parameterization determines the sampling rate on the surface. In this article, we present an automatic parameterization method for segmenting a surface into patches that are then flattened with little stretch. Many objects consist of regions of relatively simple shapes, each of which has a natural parameterization. Based on this observation, we describe a three-stage feature-based patch creation method for manifold surfaces. The first two stages, genus reduction and feature identification, are performed with the help of distance-based surface functions. In the last stage, we create one or two patches for each feature region based on a covariance matrix of the feature's surface points. To reduce stretch during patch unfolding, we notice that stretch is a 2 × 2 tensor, which in ideal situations is the identity. Therefore, we use the <i>Green-Lagrange tensor</i> to measure and to guide the optimization process. Furthermore, we allow the boundary vertices of a patch to be optimized by adding <i>scaffold triangles</i>. We demonstrate our feature-based patch creation and patch unfolding methods for several textured models. Finally, to evaluate the quality of a given parameterization, we describe an image-based error measure that takes into account stretch, seams, smoothness, packing efficiency, and surface visibility.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 187 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Why cross fields are not equivalent to quadrilateral meshes;Computer Methods in Applied Mechanics and Engineering;2023-12

2. Automatic Schelling Point Detection From Meshes;IEEE Transactions on Visualization and Computer Graphics;2023-06-01

3. Practical construction of globally injective parameterizations with positional constraints;Computational Visual Media;2023-01-03

4. Globally Injective Flattening via a Reduced Harmonic Subspace;ACM Transactions on Graphics;2022-11-30

5. 3D mesh cutting for high quality atlas packing;Computer Aided Geometric Design;2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3