Interaction trees: representing recursive and impure programs in Coq

Author:

Xia Li-yao1,Zakowski Yannick1,He Paul1,Hur Chung-Kil2,Malecha Gregory3,Pierce Benjamin C.1,Zdancewic Steve1

Affiliation:

1. University of Pennsylvania, USA

2. Seoul National University, South Korea

3. BedRock Systems, USA

Abstract

Interaction trees (ITrees) are a general-purpose data structure for representing the behaviors of recursive programs that interact with their environments. A coinductive variant of “free monads,” ITrees are built out of uninterpreted events and their continuations. They support compositional construction of interpreters from event handlers , which give meaning to events by defining their semantics as monadic actions. ITrees are expressive enough to represent impure and potentially nonterminating, mutually recursive computations, while admitting a rich equational theory of equivalence up to weak bisimulation. In contrast to other approaches such as relationally specified operational semantics, ITrees are executable via code extraction, making them suitable for debugging, testing, and implementing software artifacts that are amenable to formal verification. We have implemented ITrees and their associated theory as a Coq library, mechanizing classic domain- and category-theoretic results about program semantics, iteration, monadic structures, and equational reasoning. Although the internals of the library rely heavily on coinductive proofs, the interface hides these details so that clients can use and reason about ITrees without explicit use of Coq’s coinduction tactics. To showcase the utility of our theory, we prove the termination-sensitive correctness of a compiler from a simple imperative source language to an assembly-like target whose meanings are given in an ITree-based denotational semantics. Unlike previous results using operational techniques, our bisimulation proof follows straightforwardly by structural induction and elementary rewriting via an equational theory of combinators for control-flow graphs.

Funder

National Research Foundation of Korea

Office of Naval Research

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Two-Phase Infinite/Finite Low-Level Memory Model: Reconciling Integer–Pointer Casts, Finite Space, and undef at the LLVM IR Level of Abstraction;Proceedings of the ACM on Programming Languages;2024-08-15

2. Refinement Composition Logic;Proceedings of the ACM on Programming Languages;2024-08-15

3. A HAT Trick: Automatically Verifying Representation Invariants using Symbolic Finite Automata;Proceedings of the ACM on Programming Languages;2024-06-20

4. Locally Abstract, Globally Concrete Semantics of Concurrent Programming Languages;ACM Transactions on Programming Languages and Systems;2024-03-29

5. Formally verified animation for RoboChart using interaction trees;Journal of Logical and Algebraic Methods in Programming;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3