Gaussian Random Number Generation

Author:

Malik Jamshaid Sarwar1,Hemani Ahmed1

Affiliation:

1. KTH, Royal Institute of Technology, Sweden

Abstract

Some excellent surveys of the Gaussian random number generators (GRNGs) from the algorithmic perspective exist in the published literature to date (e.g., Thomas et al. [2007]). In the last decade, however, advancements in digital hardware have resulted in an ever-decreasing hardware cost and increased design flexibility. Additionally, recent advances in applications like gaming, weather forecasting, and simulations in physics and astronomy require faster, cheaper, and statistically accurate GRNGs. These two trends have contributed toward the development of a number of novel GRNG architectures optimized for hardware design. A detailed comparative study of these hardware architectures has been somewhat missing in the published literature. This work provides the potential user a capsulization of the published hardware GRNG architectures. We have provided the method and theory, pros and cons, and a comparative summary of the speed, statistical accuracy, and hardware resource utilization of these architectures. Finally, we have complemented this work by describing two novel hardware GRNG architectures, namely, the CLT-inversion and the multihat algorithm, respectively. These new architectures provide high tail accuracy ( and , respectively) at a low hardware cost.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Reference52 articles.

1. A Compact and Accurate Gaussian Variate Generator

2. D. Ashlock. 2006. Evolutionary Computation for Modeling and Optimization. Springer. D. Ashlock. 2006. Evolutionary Computation for Modeling and Optimization. Springer.

3. FPGA Implementation of Pseudo Random Number Generators for Monte Carlo Methods in Quantitative Finance

4. A Note on the Generation of Random Normal Deviates

5. Some Comments on C. S. Wallace's Random Number Generators

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3