Spatial Prediction for Multivariate Non-Gaussian Data

Author:

Liu Xutong1,Chen Feng2,Lu Yen-Cheng3,Lu Chang-Tien3

Affiliation:

1. ebay Inc

2. University at Albany, SUNY, Albany, NY

3. Virginia Tech

Abstract

With the ever increasing volume of geo-referenced datasets, there is a real need for better statistical estimation and prediction techniques for spatial analysis. Most existing approaches focus on predicting multivariate Gaussian spatial processes, but as the data may consist of non-Gaussian (or mixed type) variables, this creates two challenges: (1) how to accurately capture the dependencies among different data types, both Gaussian and non-Gaussian; and (2) how to efficiently predict multivariate non-Gaussian spatial processes. In this article, we propose a generic approach for predicting multiple response variables of mixed types. The proposed approach accurately captures cross-spatial dependencies among response variables and reduces the computational burden by projecting the spatial process to a lower dimensional space with knot-based techniques. Efficient approximations are provided to estimate posterior marginals of latent variables for the predictive process, and extensive experimental evaluations based on both simulation and real-life datasets are provided to demonstrate the effectiveness and efficiency of this new approach.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3