Citywide Traffic Flow Prediction Based on Multiple Gated Spatio-temporal Convolutional Neural Networks

Author:

Chen Cen1ORCID,Li Kenli2,Teo Sin G.3,Zou Xiaofeng2,Li Keqin4,Zeng Zeng3

Affiliation:

1. Hunan University and Infocomm for Research Institute, Singapore

2. Hunan University, Changsha, China

3. Infocomm for Research Institute, Singapore

4. State University of New York and Hunan University, Changsha, China

Abstract

Traffic flow prediction is crucial for public safety and traffic management, and remains a big challenge because of many complicated factors, e.g., multiple spatio-temporal dependencies, holidays, and weather. Some work leveraged 2D convolutional neural networks (CNNs) and long short-term memory networks (LSTMs) to explore spatial relations and temporal relations, respectively, which outperformed the classical approaches. However, it is hard for these work to model spatio-temporal relations jointly. To tackle this, some studies utilized LSTMs to connect high-level layers of CNNs, but left the spatio-temporal correlations not fully exploited in low-level layers. In this work, we propose novel spatio-temporal CNNs to extract spatio-temporal features simultaneously from low-level to high-level layers, and propose a novel gated scheme to control the spatio-temporal features that should be propagated through the hierarchy of layers. Based on these, we propose an end-to-end framework, multiple gated spatio-temporal CNNs (MGSTC), for citywide traffic flow prediction. MGSTC can explore multiple spatio-temporal dependencies through multiple gated spatio-temporal CNN branches, and combine the spatio-temporal features with external factors dynamically. Extensive experiments on two real traffic datasets demonstrates that MGSTC outperforms other state-of-the-art baselines.

Funder

International (Regional) Cooperation and Exchange Program of National Natural Science Foundation of China

National Natural Science Foundation of China

Postdoctoral Science Foundation of China

National Key R8D Program of China

National Outstanding Youth Science Program of National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference60 articles.

Cited by 134 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3