Fast Shapley Value Computation in Data Assemblage Tasks as Cooperative Simple Games

Author:

Luo Xuan1ORCID,Pei Jian2ORCID,Xu Cheng3ORCID,Zhang Wenjie4ORCID,Xu Jianliang3ORCID

Affiliation:

1. Simon Fraser University, Burnaby, BC, CA

2. Duke University, Durham, NC, USA

3. Hong Kong Baptist University, Kowloon, Hong Kong

4. University of New South Wales, Sydney, NSW, Australia

Abstract

In this paper, we tackle the challenging problem of Shapley value computation in data markets in a novel setting of data assemblage tasks with binary utility functions among data owners. By modeling these scenarios as cooperative simple games, we leverage pivotal probabilities to transform the computation into a problem of counting beneficiaries. Moreover, we make an insightful observation that the Shapley values can be computed using subsets of minimal syntheses within the inclusion-exclusion framework in combinatorics. Based on this insight, we develop a game decomposition approach and utilize techniques in Boolean function decomposition into disjunctive normal form. One interesting property of our method is that the time complexity depends only on the data owners participating in those minimal syntheses, rather than all the data owners. Extensive experiments with real data sets demonstrate a significant efficiency improvement for computing the Shapley values in data assemblage tasks modeled as simple games.

Funder

ARC Future Fellowship

ARC Discovery Project

Beyond the Horizon grant by Duke University

Hong Kong RGC CRF Project

NSERC Discovery Grant

Publisher

Association for Computing Machinery (ACM)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Counterfactual Explanation of Shapley Value in Data Coalitions;Proceedings of the VLDB Endowment;2024-07

2. Applications and Computation of the Shapley Value in Databases and Machine Learning;Companion of the 2024 International Conference on Management of Data;2024-06-09

3. Fast Shapley Value Computation in Data Assemblage Tasks as Cooperative Simple Games;Proceedings of the ACM on Management of Data;2024-03-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3