Algorithms and Applications to Weighted Rank-one Binary Matrix Factorization

Author:

Lu Haibing1ORCID,Chen Xi2,Shi Junmin3,Vaidya Jaideep4ORCID,Atluri Vijayalakshmi4,Hong Yuan5,Huang Wei6

Affiliation:

1. Santa Clara Unviersity, Santa Clara, CA USA

2. GEIRI North America, San Jose, CA, USA

3. New Jersey Institute of Technology, University Heights, Newark, NJ, USA

4. Rutgers University, Washington Park, Newark, NJ, USA

5. Illinois Institute of Technology, Chicago, IL, USA

6. Southern University of Science 8 Technology; Xi’an Jiaotong University, China

Abstract

Many applications use data that are better represented in the binary matrix form, such as click-stream data, market basket data, document-term data, user-permission data in access control, and others. Matrix factorization methods have been widely used tools for the analysis of high-dimensional data, as they automatically extract sparse and meaningful features from data vectors. However, existing matrix factorization methods do not work well for the binary data. One crucial limitation is interpretability, as many matrix factorization methods decompose an input matrix into matrices with fractional or even negative components, which are hard to interpret in many real settings. Some matrix factorization methods, like binary matrix factorization, do limit decomposed matrices to binary values. However, these models are not flexible to accommodate some data analysis tasks, like trading off summary size with quality and discriminating different types of approximation errors. To address those issues, this article presents weighted rank-one binary matrix factorization, which is to approximate a binary matrix by the product of two binary vectors, with parameters controlling different types of approximation errors. By systematically running weighted rank-one binary matrix factorization, one can effectively perform various binary data analysis tasks, like compression, clustering, and pattern discovery. Theoretical properties on weighted rank-one binary matrix factorization are investigated and its connection to problems in other research domains are examined. As weighted rank-one binary matrix factorization in general is NP-hard, efficient and effective algorithms are presented. Extensive studies on applications of weighted rank-one binary matrix factorization are also conducted.

Funder

NSFC

National Institutes of Health

State Grid Corporation of China

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Management Information Systems

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3