A Softwarized Intrusion Detection System for IoT-Enabled Smart Healthcare System

Author:

Javeed Danish1,Gao Tianhan1,Saeed Muhammad Shahid2,Kumar Prabhat3,Kumar Randhir4,Jolfaei Alireza5

Affiliation:

1. Software College, Northeastern University, China

2. Dalian University of Technology, China

3. Department of Software Engineering, LUT School of Engineering Science, LUT University, Finland

4. Department of Computer Science and Engineering, SRM University AP, India

5. College of Science and Engineering, Flinders University, Australia

Abstract

The Internet of Things-enabled Smart Healthcare System (IoT-SHS) is a networked infrastructure of intelligent wearables, software applications, health systems, and services that continuously monitors and transmits patient-sensitive data using an open wireless channel. The conventional security mechanisms are unsuitable for detecting attacks in the dynamic IoT-SHS context due to resource limitations and heterogeneity in low-cost healthcare devices. Deep Learning (DL) solutions for Intrusion Detection System (IDS) and softwarization of the network has the potential to achieve secure network services in the IoT-SHS environment. Motivated by the aforementioned discussion, we propose an intelligent softwarized IDS for protecting the critical infrastructure of the IoT-SHS ecosystem. Specifically, the DL-based IDS is designed using a hybrid cuda Long Short-Term Memory Deep Neural Network (cuLSTM-DNN) algorithm to assist network administrators in efficient decision-making for the generated intrusions. To further bolster the system’s resilience, we suggest a deployment architecture for the proposed CUDA-powered IDS using OpenStack Tacker in a real SDN environment, ensuring that virtual machines can directly utilize the host’s NVIDIA GPU, thereby streamlining and enhancing the network’s operational efficiency. The experimental results using the CICDDoS2019 dataset confirm the effectiveness of the proposed framework over some baseline and recent state-of-the-art techniques.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3