SKMD

Author:

Lee Janghaeng1,Samadi Mehrzad1,Park Yongjun2,Mahlke Scott1

Affiliation:

1. University of Michigan, MI, USA

2. Hongik University, Seoul, Korea

Abstract

Heterogeneous computing on CPUs and GPUs has traditionally used fixed roles for each device: the GPU handles data parallel work by taking advantage of its massive number of cores while the CPU handles non data-parallel work, such as the sequential code or data transfer management. This work distribution can be a poor solution as it underutilizes the CPU, has difficulty generalizing beyond the single CPU-GPU combination, and may waste a large fraction of time transferring data. Further, CPUs are performance competitive with GPUs on many workloads, thus simply partitioning work based on the fixed roles may be a poor choice. In this article, we present the single-kernel multiple devices (SKMD) system, a framework that transparently orchestrates collaborative execution of a single data-parallel kernel across multiple asymmetric CPUs and GPUs. The programmer is responsible for developing a single data-parallel kernel in OpenCL, while the system automatically partitions the workload across an arbitrary set of devices, generates kernels to execute the partial workloads, and efficiently merges the partial outputs together. The goal is performance improvement by maximally utilizing all available resources to execute the kernel. SKMD handles the difficult challenges of exposed data transfer costs and the performance variations GPUs have with respect to input size. On real hardware, SKMD achieves an average speedup of 28% on a system with one multicore CPU and two asymmetric GPUs compared to a fastest device execution strategy for a set of popular OpenCL kernels.

Funder

National Science Foundation

Defense Advanced Research Projects Agency under the Power Efficiency Revolution for Embedded Computing Technologies (PERFECT) program

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference37 articles.

1. AMD. 2012. Accelerated Parallel Processing (APP) SDK. http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/. AMD. 2012. Accelerated Parallel Processing (APP) SDK. http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/.

2. A Heterogeneous Parallel Framework for Domain-Specific Languages

3. Ocelot

4. Harmony

5. Microarchitectural Design Space Exploration Using an Architecture-Centric Approach

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CuPBoP: Making CUDA a Portable Language;ACM Transactions on Design Automation of Electronic Systems;2024-06-21

2. A Unified CPU-GPU Protocol for GNN Training;Proceedings of the 21st ACM International Conference on Computing Frontiers;2024-05-07

3. Hardware support for balanced co-execution in heterogeneous processors;Proceedings of the 21st ACM International Conference on Computing Frontiers;2024-05-07

4. MVSym: Efficient symbiotic exploitation of HLS-kernel multi-versioning for collaborative CPU-FPGA cloud systems;Integration;2023-11

5. Regular Composite Resource Partitioning and Reconfiguration in Open Systems;ACM Transactions on Embedded Computing Systems;2023-09-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3