Real-time Subsurface Control Variates

Author:

Xie Tiantian1,Olano Marc1

Affiliation:

1. University of Maryland, Baltimore County, Baltimore, Maryland, USA

Abstract

Real-time adaptive sampling is a new technique recently proposed for efficient importance sampling in realtime Monte Carlo sampling in subsurface scattering. It adaptively places samples based on variance tracking to help escape the uncanny valley of subsurface rendering. However, the occasional performance drop due to temporal lighting dynamics (e.g., guns or lights turning on and off) could hinder adoption in games or other applications where smooth high frame rate is preferred. In this paper we propose a novel usage of Control Variates (CV) in the sample domain instead of shading domain to maintain a consistent low pass time. Our algorithm seamlessly reduces to diffuse with zero scattering samples for sub-pixel scattering. We propose a novel joint-optimization algorithm for sample count and CV coefficient estimation. The main enabler is our novel time-variant covariance updating method that helps remove the effect of recent temporal dynamics from variance tracking. Since bandwidth is critical in real-time rendering, a solution without adding any extra textures is also provided.

Publisher

Association for Computing Machinery (ACM)

Subject

General Arts and Humanities

Reference28 articles.

1. Carol Alexander. 1999. Risk Management and Analysis. Volume 1: Measuring and Modelling Financial Risk. Carol Alexander. 1999. Risk Management and Analysis. Volume 1: Measuring and Modelling Financial Risk.

2. Advanced techniques for realistic real-time skin rendering;Eon Eugene;GPU Gems,2007

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. State of the Art in Efficient Translucent Material Rendering with BSSRDF;Computer Graphics Forum;2023-12-22

2. Recursive Control Variates for Inverse Rendering;ACM Transactions on Graphics;2023-07-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3