State Assignment and Optimization of Ultra-High-Speed FSMs Utilizing Tristate Buffers

Author:

Czerwinski Robert1,Kania Dariusz1

Affiliation:

1. Silesian University of Technology, Gliwice, Poland

Abstract

The logic synthesis of ultra-high-speed FSMs is presented. The state assignment is based on a well-known method that uses output vectors. This technique is adjusted to include elements of two-level minimization and takes into account the limited number of terms contained in the programmable-AND/fixed-OR logic cell. The state assignment is based on a special form of the binary decision tree. The second phase of the FSM design is logic optimization. The optimization method is based on tristate buffers, thus making possible a one-logic-level FSM structure. The key point is to search partition variables that control the tristate buffers. This technique can also be applied to combinational circuits or the output block of FSMs only. Algorithms for state assignment and optimization are presented and richly illustrated by examples. The method is dedicated to using specific features of complex programmable logic devices. Experimental results prove its effectiveness (e.g., the implementation of the the 16-bit counter requires 136 logic cells and one-logic-cell level instead of 213 cells and four levels). The optimization method using tristate buffers and a state assignment binary decision tree can be directly applied to FPGA-dedicated logic synthesis.

Funder

Ministry of Science and Higher Education

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3