Predictor-Estimator

Author:

Kim Hyun1ORCID,Jung Hun-Young1,Kwon Hongseok1,Lee Jong-Hyeok1,Na Seung-Hoon2

Affiliation:

1. Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea

2. Chonbuk National University, Jeonju, Republic of Korea

Abstract

Recently, quality estimation has been attracting increasing interest from machine translation researchers, aiming at finding a good estimator for the “quality” of machine translation output. The common approach for quality estimation is to treat the problem as a supervised regression/classification task using a quality-annotated noisy parallel corpus, called quality estimation data , as training data. However, the available size of quality estimation data remains small, due to the too-expensive cost of creating such data. In addition, most conventional quality estimation approaches rely on manually designed features to model nonlinear relationships between feature vectors and corresponding quality labels. To overcome these problems, this article proposes a novel neural network architecture for quality estimation task—called the predictor-estimator —that considers word prediction as an additional pre-task. The major component of the proposed neural architecture is a word prediction model based on a modified neural machine translation model—a probabilistic model for predicting a target word conditioned on all the other source and target contexts. The underlying assumption is that the word prediction model is highly related to quality estimation models and is therefore able to transfer useful knowledge to quality estimation tasks. Our proposed quality estimation method sequentially trains the following two types of neural models: (1) Predictor : a neural word prediction model trained from parallel corpora and (2) Estimator : a neural quality estimation model trained from quality estimation data. To transfer word a prediction task to a quality estimation task, we generate quality estimation feature vectors from the word prediction model and feed them into the quality estimation model. The experimental results on WMT15 and 16 quality estimation datasets show that our proposed method has great potential in the various sub-challenges.

Funder

ICT Consilience Creative Program of MSIP/IITP

ICT R8D Program of MSIP/IITP

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3