Readability Metrics for Machine Translation in Dutch: Google vs. Azure & IBM

Author:

van Toledo Chaïm1ORCID,Schraagen Marijn1,van Dijk Friso1ORCID,Brinkhuis Matthieu1ORCID,Spruit Marco23ORCID

Affiliation:

1. Department of Information and Computing Sciences, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands

2. Department of Public Health and Primary Care, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, The Netherlands

3. Leiden Institute of Advanced Computer Science, Leiden University, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

Abstract

This paper introduces a novel method to predict when a Google translation is better than other machine translations (MT) in Dutch. Instead of considering fidelity, this approach considers fluency and readability indicators for when Google ranked best. This research explores an alternative approach in the field of quality estimation. The paper contributes by publishing a dataset with sentences from English to Dutch, with human-made classifications on a best-worst scale. Logistic regression shows a correlation between T-Scan output, such as readability measurements like lemma frequencies, and when Google translation was better than Azure and IBM. The last part of the results section shows the prediction possibilities. First by logistic regression and second by a generated automated machine learning model. Respectively, they have an accuracy of 0.59 and 0.61.

Funder

P-Direkt, Ministry of the Interior and Kingdom Relations, The Netherlands

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference51 articles.

1. Prus’s “Pharaoh” and Curtin’s translation;Kasparek;Pol. Rev.,1986

2. Translation quality assessment;Moorkens;Machine Translation: Technologies and Applications,2018

3. (2022, May 12). Machinetranslate.org. Available online: https://machinetranslate.org/.

4. Ive, J., Specia, L., Szoc, S., Vanallemeersch, T., Van den Bogaert, J., Farah, E., Maroti, C., Ventura, A., and Khalilov, M. (2020, January 11–16). A Post-Editing Dataset in the Legal Domain: Do we Underestimate Neural Machine Translation Quality?. Proceedings of the 12th Language Resources and Evaluation Conference, Marseille, France.

5. T-Scan: A new tool for analyzing Dutch text;Kraf;Comput. Linguist. Neth. J.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3