An abstract domain for certifying neural networks

Author:

Singh Gagandeep1,Gehr Timon1,Püschel Markus1,Vechev Martin1

Affiliation:

1. ETH Zurich, Switzerland

Abstract

We present a novel method for scalable and precise certification of deep neural networks. The key technical insight behind our approach is a new abstract domain which combines floating point polyhedra with intervals and is equipped with abstract transformers specifically tailored to the setting of neural networks. Concretely, we introduce new transformers for affine transforms, the rectified linear unit (ReLU), sigmoid, tanh, and maxpool functions. We implemented our method in a system called DeepPoly and evaluated it extensively on a range of datasets, neural architectures (including defended networks), and specifications. Our experimental results indicate that DeepPoly is more precise than prior work while scaling to large networks. We also show how to combine DeepPoly with a form of abstraction refinement based on trace partitioning. This enables us to prove, for the first time, the robustness of the network when the input image is subjected to complex perturbations such as rotations that employ linear interpolation.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 340 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Certified Quantization Strategy Synthesis for Neural Networks;Lecture Notes in Computer Science;2024-09-11

2. A Zonotopic Dempster-Shafer Approach to the Quantitative Verification of Neural Networks;Lecture Notes in Computer Science;2024-09-11

3. Certified Continual Learning for Neural Network Regression;Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis;2024-09-11

4. Affinitree: A Compositional Framework for Formal Analysis and Explanation of Deep Neural Networks;Lecture Notes in Computer Science;2024-09-10

5. Verifying safety of neural networks from topological perspectives;Science of Computer Programming;2024-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3