1. Deep Learning with Differential Privacy
2. Pseudo-rehearsal: Achieving deep reinforcement learning without catastrophic forgetting
3. Mislav Balunović and Martin Vechev. 2020. Adversarial training and provable defenses: Bridging the gap. In 8th International Conference on Learning Representations (ICLR 2020)(virtual).
4. Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, and Jiakai Zhang. 2016. End to end learning for self-driving cars. arXiv preprint arXiv:1604.07316.
5. Tom B. Brown Benjamin Mann Nick Ryder Melanie Subbiah Jared Kaplan Prafulla Dhariwal Arvind Neelakantan Pranav Shyam Girish Sastry Amanda Askell Sandhini Agarwal Ariel Herbert-Voss Gretchen Krueger Tom Henighan Rewon Child Aditya Ramesh Daniel M. Ziegler Jeffrey Wu Clemens Winter Christopher Hesse Mark Chen Eric Sigler Mateusz Litwin Scott Gray Benjamin Chess Jack Clark Christopher Berner Sam McCandlish Alec Radford Ilya Sutskever and Dario Amodei. 2020. Language Models are Few-Shot Learners. arxiv:2005.14165.