Enhanced Reweighted MRFs for Efficient Fashion Image Parsing

Author:

Wu Qiong1,Boulanger Pierre1

Affiliation:

1. University of Alberta, Edmonton, Alberta

Abstract

Previous image parsing methods usually model the problem in a conditional random field which describes a statistical model learned from a training dataset and then processes a query image using the conditional probability. However, for clothing images, fashion items have a large variety of layering and configuration, and it is hard to learn a certain statistical model of features that apply to general cases. In this article, we take fashion images as an example to show how Markov Random Fields (MRFs) can outperform Conditional Random Fields when the application does not follow a certain statistical model learned from the training data set. We propose a new method for automatically parsing fashion images in high processing efficiency with significantly less training time by applying a modification of MRFs, named reweighted MRF (RW-MRF), which resolves the problem of over smoothing infrequent labels. We further enhance RW-MRF with occlusion prior and background prior to resolve two other common problems in clothing parsing, occlusion, and background spill. Our experimental results indicate that our proposed clothing parsing method significantly improves processing time and training time over state-of-the-art methods, while ensuring comparable parsing accuracy and improving label recall rate.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Phase Contour Enhancement Network for Clothing Parsing;IEEE Transactions on Consumer Electronics;2024-02

2. A Holistic Approach for Role Inference and Action Anticipation in Human Teams;ACM Transactions on Intelligent Systems and Technology;2022-09-22

3. Unabridged adjacent modulation for clothing parsing;Pattern Recognition;2022-07

4. Dual Context Based Network for Clothing Parsing;2022 7th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA);2022-04-22

5. MVSN: A Multi-view stack network for human parsing;Neurocomputing;2021-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3