Hybrid Redundancy for Defect Tolerance in Molecular Crossbar Memory

Author:

Wang Shuo1,Dai Jianwei1,Wang Lei1

Affiliation:

1. University of Connecticut

Abstract

Nano/molecular technologies have emerged as the potential fabrics for building future integrated systems. However, due to the imperfect fabrication process, these extremely scaled devices are vulnerable to a large number of defects and transient faults. Memory systems, which are the primary application targeted by these technologies, are particularly exposed to this problem due to the ultra-high integration density and elevated error sensitivity. In this article, we propose a defect-tolerant technique, referred to as hybrid redundancy allocation , for the design of molecular crossbar memory systems. By using soft redundancy (runtime exploitation of memory spatial/temporal locality) in combination with hardware redundancy (spare memory cells), the proposed technique can achieve better error management at a low cost as compared with conventional techniques. Simulation results demonstrate the significant improvement in defect tolerance, efficiency, and scalability of the proposed technique.

Funder

Center for Hierarchical Manufacturing, National Science Foundation

Focus Center Research Program

Center on Functionally Engineering Nano Architectonics

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3