Model checking copy phases of concurrent copying garbage collection with various memory models

Author:

Ugawa Tomoharu1,Abe Tatsuya2,Maeda Toshiyuki2

Affiliation:

1. Kochi University of Technology, Japan

2. Chiba Institute of Technology, Japan

Abstract

Modern concurrent copying garbage collection (GC), in particular, real-time GC, uses fine-grained synchronizations with a mutator, which is the application program that mutates memory, when it moves objects in its copy phase. It resolves a data race using a concurrent copying protocol, which is implemented as interactions between the collector threads and the read and write barriers that the mutator threads execute. The behavioral effects of the concurrent copying protocol rely on the memory model of the CPUs and the programming languages in which the GC is implemented. It is difficult, however, to formally investigate the behavioral properties of concurrent copying protocols against various memory models. To address this problem, we studied the feasibility of the bounded model checking of concurrent copying protocols with memory models. We investigated a correctness-related behavioral property of copying protocols of various concurrent copying GC algorithms, including real-time GC Stopless, Clover, Chicken, Staccato, and Schism against six memory models, total store ordering (TSO), partial store ordering (PSO), relaxed memory ordering (RMO), and their variants, in addition to sequential consistency (SC) using bounded model checking. For each combination of a protocol and memory model, we conducted model checking with a model of a mutator. In this wide range of case studies, we found faults in two GC algorithms, one of which is relevant to the memory model. We fixed these faults with the great help of counterexamples. We also modified some protocols so that they work under some memory models weaker than those for which the original protocols were designed, and checked them using model checking. We believe that bounded model checking is a feasible approach to investigate behavioral properties of concurrent copying protocols under weak memory models.

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Heap Fuzzing: Automatic Garbage Collection Testing with Expert-Guided Random Events;2023 IEEE Conference on Software Testing, Verification and Validation (ICST);2023-04

2. Deep Dive into ZGC: A Modern Garbage Collector in OpenJDK;ACM Transactions on Programming Languages and Systems;2022-09-21

3. Local Data Race Freedom with Non-multi-copy Atomicity;Model Checking Software;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3