Efficient simulation of critical synchronous dataflow graphs

Author:

Hsu Chia-Jui1,Ko Ming-Yung1,Bhattacharyya Shuvra S.1,Ramasubbu Suren2,Pino José Luis2

Affiliation:

1. University of Maryland, College Park, MD

2. Agilent Technologies, Palo Alto, CA

Abstract

System-level modeling, simulation, and synthesis using electronic design automation (EDA) tools are key steps in the design process for communication and signal processing systems, and the synchronous dataflow (SDF) model of computation is widely used in EDA tools for these purposes. Behavioral representations of modern wireless communication systems typically result in critical SDF graphs : These consist of hundreds of components (or more) and involve complex intercomponent connections with highly multirate relationships (i.e., with large variations in average rates of data transfer or component execution across different subsystems). Simulating such systems using conventional SDF scheduling techniques generally leads to unacceptable simulation time and memory requirements on modern workstations and high-end PCs. In this article, we present a novel simulation-oriented scheduler (SOS) that strategically integrates several techniques for graph decomposition and SDF scheduling to provide effective, joint minimization of time and memory requirements for simulating critical SDF graphs. We have implemented SOS in the advanced design system (ADS) from Agilent Technologies. Our results from this implementation demonstrate large improvements in simulating real-world, large-scale, and highly multirate wireless communication systems (e.g., 3GPP, Bluetooth, 802.16e, CDMA 2000, XM radio, EDGE, and Digital TV).

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3