Detection of Anomalous Behavior of Smartphone Devices using Changepoint Analysis and Machine Learning Techniques

Author:

Manzano Sanchez Ricardo Alejandro1,Naik Kshirasagar2,Albasir Abdurhman2,Zaman Marzia3,Goel Nishith3

Affiliation:

1. University of Waterloo

2. University of Waterloo Faculty of Engineering

3. Cistel Technology

Abstract

Detecting anomalous behavior on smartphones is challenging since malware evolution. Other methodologies detect malicious behavior by analyzing static features of the application code or dynamic data samples obtained from hardware or software. Static analysis is prone to code's obfuscation while dynamic needs that malicious activities to cease to be dormant in the shortest possible time while data samples are collected. Triggering and capturing malicious behavior in data samples in dynamic analysis is challenging since we need to generate an efficient combination of user's inputs to trigger these malicious activities. We propose a general model which uses a data collector and analyzer to unveil malicious behavior by analyzing the device's power consumption since this summarizes the changes in software. The data collector uses an automated tool to generate user inputs. The data analyzer uses changepoint analysis to extract features from power consumption and machine learning techniques to train these features. The data analyzer stage contains two methodologies that extract features using parametric and non-parametric changepoint. Our methodologies are efficient in data collection time than a manual method and the data analyzer provides higher accuracy compared to other techniques, reaching over 94% F1-measure for emulated and real malware.

Publisher

Association for Computing Machinery (ACM)

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A comprehensive review of model compression techniques in machine learning;Applied Intelligence;2024-09-02

2. Anomaly Detection in SACP Cell Data using Changepoint and One-Class SVM;2022 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom);2022-06-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3