Improving WCET by applying a WC code-positioning optimization

Author:

Zhao Wankang1,Whalley David1,Healy Christopher2,Mueller Frank3

Affiliation:

1. Florida State University, Tallahassee, Fl

2. Furman University, Greenville, SC

3. North Carolina State University, Raleigh, NC

Abstract

Applications in embedded systems often need to meet specified timing constraints. It is advantageous to not only calculate the worst-case execution time (WCET) of an application, but to also perform transformation, which reduce the WCET, since an application with a lower WCET will be less likely to violate its timing constraints. Some processors incur a pipeline delay whenever an instruction transfers control to a target that is not the next sequential instruction. Code-positioning optimizations attempt to reduce these delays by positioning the basic blocks to minimize the number of unconditional jumps and taken conditional branches that occur. Traditional code-positioning algorithms use profile data to find the frequently executed edges between basic blocks, then minimize the transfers of control along these edges to reduce the average case execution time (ACET). This paper introduces a WCET code-positioning optimization, driven by the worst-case (WC) path information from a timing analyzer, to reduce the WCET instead of ACET. This WCET optimization changes the layout of the code in memory to reduce the branch penalties along the WC paths. Unlike the frequency of edges in traditional profile-driven code positioning, the WC path may change after code-positioning decisions are made. Thus, WCET code positioning is inherently more challenging than ACET code positioning. The experimental results show that this optimization typically finds the optimal layout of the basic blocks with the minimal WCET. The results show over a 7% reduction in WCET is achieved after code positioning is performed.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient and Scalable Graph Parallel Processing With Symbolic Execution;ACM Transactions on Architecture and Code Optimization;2018-03-31

2. A Compile-Time Optimization Method for WCET Reduction in Real-Time Embedded Systems through Block Formation;ACM Transactions on Architecture and Code Optimization;2016-01-07

3. Instruction-Cache Locking for Improving Embedded Systems Performance;ACM Transactions on Embedded Computing Systems;2015-05-21

4. Building timing predictable embedded systems;ACM Transactions on Embedded Computing Systems;2014-12-05

5. Instruction Cache Locking for Embedded Systems using Probability Profile;Journal of Signal Processing Systems;2011-12-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3