Efficient and Scalable Graph Parallel Processing With Symbolic Execution

Author:

Zheng Long1,Liao Xiaofei1ORCID,Jin Hai1

Affiliation:

1. Huazhong University of Science and Technology, Wuhan, China

Abstract

Existing graph processing essentially relies on the underlying iterative execution with synchronous (Sync) and/or asynchronous (Async) engine. Nevertheless, they both suffer from a wide class of inherent serialization arising from data interdependencies within a graph. In this article, we present SymGraph, a judicious graph engine with symbolic iteration that enables the parallelism of dependent computation on vertices. SymGraph allows using abstract symbolic value (instead of the concrete value) for the computation if the desired data is unavailable. To maximize the potential of symbolic iteration, we propose a chain of tailored sophisticated techniques, enabling SymGraph to scale out with a new milestone of efficiency for large-scale graph processing. We evaluate SymGraph in comparison to Sync, Async, and a hybrid of Sync and Async engines. Our results on 12 nodes show that SymGraph outperforms all three graph engines by 1.93x (vs. Sync), 1.98x (vs. Async), and 1.57x (vs. Hybrid) on average. In particular, the performance for PageRank on 32 nodes can be dramatically improved by 16.5x (vs. Sync), 23.3x (vs. Async), and 12.1x (vs. Hybrid), respectively. The efficiency of SymGraph is also validated with at least one order of magnitude improvement in contrast to three specialized graph systems (Naiad, GraphX, and PGX.D).

Funder

NSFC

National Key Research and Development Program of China

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Input decomposition by clusterization for symbolic execution;2022 IEEE 17th International Conference on Computer Sciences and Information Technologies (CSIT);2022-11-10

2. Efficient Graph Processing with Invalid Update Filtration;IEEE Transactions on Big Data;2021-07-01

3. On the Anatomy of Predictive Models for Accelerating GPU Convolution Kernels and Beyond;ACM Transactions on Architecture and Code Optimization;2021-03-31

4. AsynGraph;ACM Transactions on Architecture and Code Optimization;2020-12-22

5. A Conflict-free Scheduler for High-performance Graph Processing on Multi-pipeline FPGAs;ACM Transactions on Architecture and Code Optimization;2020-06-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3