Correlated Multi-label Classification with Incomplete Label Space and Class Imbalance

Author:

Braytee Ali1ORCID,Liu Wei1,Anaissi Ali2ORCID,Kennedy Paul J.3

Affiliation:

1. Advanced Analytics Institute, University of Technology Sydney, Ultimo, NSW, Australia

2. School of IT, Faculty of Engineering and IT, The University of Sydney, Camperdown, NSW, Australia

3. Centre of Artificial Intelligence, University of Technology Sydney, Camperdown, NSW, Australia

Abstract

Multi-label classification is defined as the problem of identifying the multiple labels or categories of new observations based on labeled training data. Multi-labeled data has several challenges, including class imbalance, label correlation, incomplete multi-label matrices, and noisy and irrelevant features. In this article, we propose an integrated multi-label classification approach with incomplete label space and class imbalance (ML-CIB) for simultaneously training the multi-label classification model and addressing the aforementioned challenges. The model learns a new label matrix and captures new label correlations, because it is difficult to find a complete label vector for each instance in real-world data. We also propose a label regularization to handle the imbalanced multi-labeled issue in the new label, and l 1 regularization norm is incorporated in the objective function to select the relevant sparse features. A multi-label feature selection (ML-CIB-FS) method is presented as a variant of the proposed ML-CIB to show the efficacy of the proposed method in selecting the relevant features. ML-CIB is formulated as a constrained objective function. We use the accelerated proximal gradient method to solve the proposed optimisation problem. Last, extensive experiments are conducted on 19 regular-scale and large-scale imbalanced multi-labeled datasets. The promising results show that our method significantly outperforms the state-of-the-art.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3