Multi-Scale Annulus Clustering for Multi-Label Classification

Author:

Liu Yan1,Liu Changshun1,Song Jingjing1,Yang Xibei12,Xu Taihua12,Wang Pingxin23ORCID

Affiliation:

1. School of Computer, Jiangsu University of Science and Technology, Zhenjiang 212100, China

2. Key Laboratory of Oceanographic Big Data Mining and Application of Zhejiang Province, Zhoushan 316022, China

3. School of Science, Jiangsu University of Science and Technology, Zhenjiang 212100, China

Abstract

Label-specific feature learning has become a hot topic as it induces classification models by accounting for the underlying features of each label. Compared with single-label annotations, multi-label annotations can describe samples from more comprehensive perspectives. It is generally believed that the compelling classification features of a data set often exist in the aggregation of label distribution. In this in-depth study of a multi-label data set, we find that the distance between all samples and the sample center is a Gaussian distribution, which means that the label distribution has the tendency to cluster from the center and spread to the surroundings. Accordingly, the double annulus field based on this distribution trend, named DEPT for double annulusfield and label-specific features for multi-label classification, is proposed in this paper. The double annulus field emphasizes that samples of a specific size can reflect some unique features of the data set. Through intra-annulus clustering for each layer of annuluses, the distinctive feature space of these labels is captured and formed. Then, the final classification model is obtained by training the feature space. Contrastive experiments on 10 benchmark multi-label data sets verify the effectiveness of the proposed algorithm.

Funder

National Natural Science Foundation of China

Key Laboratory of Oceanographic Big Data Mining

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3