1. Software Engineering for Machine Learning: A Case Study
2. Uncovering and Mitigating Algorithmic Bias through Learned Latent Structure
3. FactSheets: Increasing trust in AI services through supplier's declarations of conformity
4. Vijay Arya , Rachel KE Bellamy , Pin-Yu Chen, Amit Dhurandhar, Michael Hind, Samuel C Hoffman, Stephanie Houde, Q Vera Liao , Ronny Luss, Aleksandra Mojsilović , 2019 . One explanation does not fit all: A toolkit and taxonomy of ai explainability techniques. arXiv preprint arXiv:1909.03012 (2019). Vijay Arya, Rachel KE Bellamy, Pin-Yu Chen, Amit Dhurandhar, Michael Hind, Samuel C Hoffman, Stephanie Houde, Q Vera Liao, Ronny Luss, Aleksandra Mojsilović, 2019. One explanation does not fit all: A toolkit and taxonomy of ai explainability techniques. arXiv preprint arXiv:1909.03012 (2019).
5. Vijay Arya , Rachel KE Bellamy , Pin-Yu Chen , Amit Dhurandhar , Michael Hind , Samuel C Hoffman , Stephanie Houde , Q Vera Liao , Ronny Luss , Aleksandra Mojsilovic , 2020 . AI Explainability 360: An Extensible Toolkit for Understanding Data and Machine Learning Models.J. Mach. Learn. Res. 21 , 130 (2020), 1 – 6 . Vijay Arya, Rachel KE Bellamy, Pin-Yu Chen, Amit Dhurandhar, Michael Hind, Samuel C Hoffman, Stephanie Houde, Q Vera Liao, Ronny Luss, Aleksandra Mojsilovic, 2020. AI Explainability 360: An Extensible Toolkit for Understanding Data and Machine Learning Models.J. Mach. Learn. Res. 21, 130 (2020), 1–6.