Towards XAI agnostic explainability to assess differential diagnosis for Meningitis diseases

Author:

Messai AyaORCID,Drif AhlemORCID,Ouyahia Amel,Guechi Meriem,Rais Mounira,Kaderali Lars,Cherifi Hocine

Abstract

Abstract Meningitis, characterized by meninges and cerebrospinal fluid inflammation, poses diagnostic challenges due to diverse clinical manifestations. This work introduces an explainable AI automatic medical decision methodology that determines critical features and their relevant values for the differential diagnosis of various meningitis cases. We proceed with knowledge acquisition to define the rules for this research. Currently, we have established the etiological diagnosis of Meningococcaemia, Meningococcal Meningitis, Tuberculous Meningitis, Aseptic Meningitis, Haemophilus influenzae Meningitis, and Pneumococcal Meningitis. The data preprocessing was conducted after collecting data from samples with meningitis diseases at Setif Hospital in Algeria. Tree-based ensemble methods were then applied to assess the model’s performance. Finally, we implement an XAI agnostic explainability approach based on the SHapley Additive exPlanations technique to attribute each feature’s contribution to the model’s output. Experiments were conducted on the collected dataset and the SINAN database, obtained from the Brazilian Government’s Health Information System on Notifiable Diseases, which comprises 6729 patients aged over 18 years. The Extreme Gradient Boosting model was chosen for its superior performance metrics (Accuracy: 0.90, AUROC: 0.94, and F1-score: 0.98). Setif’s hospital data revealed notable performance metrics (Accuracy: 0.7143, F1-Score: 0.7857). This study’s findings showcase each feature’s contribution to the model’s predictions and diagnosis. It also reveals critical biomarker ranges associated with distinct types of Meningitis. Significant diagnostic effect was found for Meningococcal Meningitis with elevated neutrophil levels ( > 40%) and balanced lymphocyte levels (40%–60%). Tuberculous Meningitis demonstrated low neutrophil levels ( < 60%) and elevated lymphocyte levels ( > 60%). H. influenzae meningitis exhibited a predominance of neutrophils ( > 80%), while Aseptic meningitis showed lower neutrophil levels ( < 40%) and lymphocyte levels within the range of 50%–60%. The majority of the AI automatic medical decision results are twinned with validation by our team of infectious disease experts, confirming the alignment of algorithmic diagnoses with clinical practices.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3