Bias Against 93 Stigmatized Groups in Masked Language Models and Downstream Sentiment Classification Tasks

Author:

Mei Katelyn1ORCID,Fereidooni Sonia2ORCID,Caliskan Aylin1ORCID

Affiliation:

1. Information School, University of Washington, USA

2. University of Washington, USA

Funder

National Institute of Standards and Technology

Publisher

ACM

Reference58 articles.

1. Persistent Anti-Muslim Bias in Large Language Models

2. Gary L. Albrecht , Verónica García Walker, and Judith A. Levy . 1982 . Social distance from the stigmatized. A test of two theories.Social science & medicine 16 14 (1982), 1319–27. Gary L. Albrecht, Verónica García Walker, and Judith A. Levy. 1982. Social distance from the stigmatized. A test of two theories.Social science & medicine 16 14 (1982), 1319–27.

3. Sarah Alnegheimish , Alicia Guo , and Yi Sun . 2022 . Using Natural Sentence Prompts for Understanding Biases in Language Models . In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics , Seattle, United States, 2824–2830. https://doi.org/10. 18653/v1/2022.naacl-main.203 10.18653/v1 Sarah Alnegheimish, Alicia Guo, and Yi Sun. 2022. Using Natural Sentence Prompts for Understanding Biases in Language Models. In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Seattle, United States, 2824–2830. https://doi.org/10.18653/v1/2022.naacl-main.203

4. Su Lin Blodgett , Solon Barocas , Hal Daumé III, and Hanna Wallach . 2020 . Language (technology) is power: A critical survey of" bias" in nlp. arXiv preprint arXiv:2005.14050 (2020). Su Lin Blodgett, Solon Barocas, Hal Daumé III, and Hanna Wallach. 2020. Language (technology) is power: A critical survey of" bias" in nlp. arXiv preprint arXiv:2005.14050 (2020).

5. Shikha Bordia and Samuel R. Bowman . 2019. Identifying and Reducing Gender Bias in Word-Level Language Models . In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop. Association for Computational Linguistics , Minneapolis, Minnesota, 7–15. https://doi.org/10. 1865 3/v1/N 19 - 3002 10.18653/v1 Shikha Bordia and Samuel R. Bowman. 2019. Identifying and Reducing Gender Bias in Word-Level Language Models. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop. Association for Computational Linguistics, Minneapolis, Minnesota, 7–15. https://doi.org/10.18653/v1/N19-3002

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Power of Absence: Thinking with Archival Theory in Algorithmic Design;Designing Interactive Systems Conference;2024-07

2. Model ChangeLists: Characterizing Updates to ML Models;The 2024 ACM Conference on Fairness, Accountability, and Transparency;2024-06-03

3. Identifying and Improving Disability Bias in GPT-Based Resume Screening;The 2024 ACM Conference on Fairness, Accountability, and Transparency;2024-06-03

4. Auditing GPT's Content Moderation Guardrails: Can ChatGPT Write Your Favorite TV Show?;The 2024 ACM Conference on Fairness, Accountability, and Transparency;2024-06-03

5. Evaluating Biased Attitude Associations of Language Models in an Intersectional Context;Proceedings of the 2023 AAAI/ACM Conference on AI, Ethics, and Society;2023-08-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3