1. Christine Basta , Marta Ruiz Costa-jussà, and Noe Casas . 2019. Evaluating the Underlying Gender Bias in Contextualized Word Embeddings. CoRR abs/1904.08783 ( 2019 ). arxiv:1904.08783http://arxiv.org/abs/1904.08783 Christine Basta, Marta Ruiz Costa-jussà, and Noe Casas. 2019. Evaluating the Underlying Gender Bias in Contextualized Word Embeddings. CoRR abs/1904.08783 (2019). arxiv:1904.08783http://arxiv.org/abs/1904.08783
2. Words high and low in pleasantness as rated by male and female college students
3. Yoshua Bengio , Réjean Ducharme , Pascal Vincent , and Christian Janvin . 2003. A neural probabilistic language model. The journal of machine learning research 3 ( 2003 ), 1137–1155. Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. 2003. A neural probabilistic language model. The journal of machine learning research 3 (2003), 1137–1155.
4. Abeba Birhane , Vinay Uday Prabhu , and Emmanuel Kahembwe . 2021. Multimodal datasets: misogyny, pornography, and malignant stereotypes. arXiv preprint arXiv:2110.01963 ( 2021 ). Abeba Birhane, Vinay Uday Prabhu, and Emmanuel Kahembwe. 2021. Multimodal datasets: misogyny, pornography, and malignant stereotypes. arXiv preprint arXiv:2110.01963 (2021).