Affiliation:
1. NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, Japan
Abstract
Light projection is a powerful technique that can be used to edit the appearance of objects in the real world. Based on pixel-wise modification of light transport, previous techniques have successfully modified static surface properties such as surface color, dynamic range, gloss, and shading. Here, we propose an alternative light projection technique that adds a variety of illusory yet realistic distortions to a wide range of static 2D and 3D projection targets. The key idea of our technique, referred to as (Deformation Lamps), is to project only dynamic luminance information, which effectively activates the motion (and shape) processing in the visual system while preserving the color and texture of the original object. Although the projected dynamic luminance information is spatially inconsistent with the color and texture of the target object, the observer's brain automatically combines these sensory signals in such a way as to correct the inconsistency across visual attributes. We conducted a psychophysical experiment to investigate the characteristics of the inconsistency correction and found that the correction was critically dependent on the retinal magnitude of the inconsistency. Another experiment showed that the perceived magnitude of image deformation produced by our techniques was underestimated. The results ruled out the possibility that the effect obtained by our technique stemmed simply from the physical change in an object's appearance by light projection. Finally, we discuss how our techniques can make the observers perceive a vivid and natural movement, deformation, or oscillation of a variety of static objects, including drawn pictures, printed photographs, sculptures with 3D shading, and objects with natural textures including human bodies.
Funder
Japanese Ministry of Education, Culture, Sports, Science, and Technology
Grants-in-Aid for Scientific Research on Innovative Areas
Publisher
Association for Computing Machinery (ACM)
Subject
Experimental and Cognitive Psychology,General Computer Science,Theoretical Computer Science
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献