Fast high-resolution appearance editing using superimposed projections

Author:

Aliaga Daniel G.1,Yeung Yu Hong1,Law Alvin1,Sajadi Behzad2,Majumder Aditi2

Affiliation:

1. Purdue University

2. University of California, Irvine

Abstract

We present a system that superimposes multiple projections onto an object of arbitrary shape and color to produce high-resolution appearance changes. Our system produces appearances at an improved resolution compared to prior works and can change appearances at near interactive rates. Three main components are central to our system. First, the problem of computing compensation images is formulated as a constrained optimization which yields high-resolution appearances. Second, decomposition of the target appearance into base and scale images enables fast swapping of appearances on the object by requiring the constrained optimization to be computed only once per object. Finally, to make high-quality appearance edits practical, an elliptical Gaussian is used to model projector pixels and their interaction between projectors. To the best of our knowledge, we build the first system that achieves high-resolution and high-quality appearance edits using multiple superimposed projectors on complex nonplanar colored objects. We demonstrate several appearance edits including specular lighting, subsurface scattering, inter-reflections, and color, texture, and geometry changes on objects with different shapes and colors.

Funder

Division of Computer and Network Systems

Division of Computing and Communication Foundations

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3