NeuralVDB: High-resolution Sparse Volume Representation using Hierarchical Neural Networks

Author:

Kim Doyub1,Lee Minjae1,Museth Ken1

Affiliation:

1. NVIDIA, USA

Abstract

We introduce NeuralVDB, which improves on an existing industry standard for efficient storage of sparse volumetric data, denoted VDB [Museth 2013], by leveraging recent advancements in machine learning. Our novel hybrid data structure can reduce the memory footprints of VDB volumes by orders of magnitude, while maintaining its flexibility and only incurring small (user-controlled) compression errors. Specifically, NeuralVDB replaces the lower nodes of a shallow and wide VDB tree structure with multiple hierarchical neural networks that separately encode topology and value information by means of neural classifiers and regressors respectively. This approach is proven to maximize the compression ratio while maintaining the spatial adaptivity offered by the higher-level VDB data structure. For sparse signed distance fields and density volumes, we have observed compression ratios on the order of 10 × to more than 100 × from already compressed VDB inputs, with little to no visual artifacts. Furthermore, NeuralVDB is shown to offer more effective compression performance compared to other neural representations such as Neural Geometric Level of Detail [Takikawa et al. 2021], Variable Bitrate Neural Fields [Takikawa et al. 2022a], and Instant Neural Graphics Primitives [Müller et al. 2022]. Finally, we demonstrate how warm-starting from previous frames can accelerate training, i.e., compression, of animated volumes as well as improve temporal coherency of model inference, i.e., decompression.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3