Optimal design and manufacture of variable stiffness laminated continuous fiber reinforced composites

Author:

Boddeti Narasimha,Tang Yunlong,Maute Kurt,Rosen David W.,Dunn Martin L.

Abstract

AbstractAdvanced manufacturing methods like multi-material additive manufacturing are enabling realization of multiscale materials with intricate spatially varying microstructures and thus, material properties. This blurs the boundary between material and structure, paving the way to lighter, stiffer, and stronger structures. Taking advantage of these tunable multiscale materials warrants development of novel design methods that effectively marry the concepts of material and structure. We propose such a design to manufacture workflow and demonstrate it with laminated continuous fiber-reinforced composites that possess variable stiffness enabled by spatially varying microstructure. This contrasts with traditional fiber-reinforced composites which typically have a fixed, homogenous microstructure and thus constant stiffness. The proposed workflow includes three steps: (1) Design automation—efficient synthesis of an optimized multiscale design with microstructure homogenization enabling efficiency, (2) Material compilation—interpretation of the homogenized design lacking specificity in microstructural detail to a manufacturable structure, and (3) Digital manufacturing—automated manufacture of the compiled structure. We adapted multiscale topology optimization, a mesh parametrization-based algorithm and voxel-based multimaterial jetting for these three steps, respectively. We demonstrated that our workflow can be applied to arbitrary 2D or 3D surfaces. We validated the complete workflow with experiments on two simple planar structures; the results agree reasonably well with simulations.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference97 articles.

1. Advanced Manufacturing. Advanced Manufacturing National Program Office https://www.manufacturing.gov/glossary/advanced-manufacturing.

2. White Papers on Advanced Manufacturing Questions. Science and Technology Policy Institute https://www.nist.gov/system/files/documents/2017/05/09/advanced-manuf-papers.pdf (2010).

3. Zheng, X. et al. Ultralight, ultrastiff mechanical metamaterials. Science 344, 1373–1377 (2014).

4. Compton, B. G. & Lewis, J. A. 3D-Printing of lightweight cellular composites. Adv. Mater. 26, 5930–5935 (2014).

5. Schumacher, C. et al. Microstructures to control elasticity in 3D printing. ACM Trans. Graph 34, 1–3 (2015).

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3