Analysis of Redundancy(d) with Identical Replicas

Author:

Hellemans T.1,Vanhoudt B.1

Affiliation:

1. University of Antwerp, Antwerp, Belgium

Abstract

Queueing systems with redundancy have received considerable attention recently. The idea of redundancy is to reduce latency by replicating each incoming job a number of times and to assign these replicas to a set of randomly selected servers. As soon as one replica completes service the remaining replicas are cancelled. Most prior work on queueing systems with redundancy assumes that the job durations of the different replicas are i.i.d., which yields insights that can be misleading for computer system design. In this paper we develop a differential equation, using the cavity method, to assess the workload and response time distribution in a large homogeneous system with redundancy without the need to rely on this independence assumption. More specifically, we assume that the duration of each replica of a single job is identical across the servers and follows a general service time distribution. Simulation results suggest that the differential equation yields exact results as the system size tends to infinity and can be used to study the stability of the system.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Correlation in redundancy systems;Queueing Systems;2022-04

2. Stability and tail behavior of redundancy systems with processor sharing;Performance Evaluation;2021-05

3. A Survey of Stability Results for Redundancy Systems;Modern Trends in Controlled Stochastic Processes:;2021

4. Improving the Performance of Heterogeneous Data Centers through Redundancy;Proceedings of the ACM on Measurement and Analysis of Computing Systems;2020-11-30

5. Stability of Redundancy Systems with Processor Sharing;Proceedings of the 13th EAI International Conference on Performance Evaluation Methodologies and Tools;2020-05-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3