Teaching Recommender Systems at Large Scale

Author:

Konstan Joseph A.1,Walker J. D.1,Brooks D. Christopher2,Brown Keith3,Ekstrand Michael D.4

Affiliation:

1. University of Minnesota, Minneapolis, MN

2. EDUCAUSE, Louisville, CO

3. University of Minnesota, Buford Ave,MN

4. Texas State University, San Marcos, TX

Abstract

In the fall of 2013, we offered an open online Introduction to Recommender Systems through Coursera, while simultaneously offering a for-credit version of the course on-campus using the Coursera platform and a flipped classroom instruction model. As the goal of offering this course was to experiment with this type of instruction, we performed extensive evaluation including surveys of demographics, self-assessed skills, and learning intent; we also designed a knowledge-assessment tool specifically for the subject matter in this course, administering it before and after the course to measure learning, and again 5 months later to measure retention. We also tracked students through the course, including separating out students enrolled for credit from those enrolled only for the free, open course. Students had significant knowledge gains across all levels of prior knowledge and across all demographic categories. The main predictor of knowledge gain was effort expended in the course. Students also had significant knowledge retention after the course. Both of these results are limited to the sample of students who chose to complete our knowledge tests. Student completion of the course was hard to predict, with few factors contributing predictive power; the main predictor of completion was intent to complete. Students who chose a concepts-only track with hand exercises achieved the same level of knowledge of recommender systems concepts as those who chose a programming track and its added assignments, though the programming students gained additional programming knowledge. Based on the limited data we were able to gather, face-to-face students performed as well as the online-only students or better; they preferred this format to traditional lecture for reasons ranging from pure convenience to the desire to watch videos at a different pace (slower for English language learners; faster for some native English speakers). This article also includes our qualitative observations, lessons learned, and future directions.

Publisher

Association for Computing Machinery (ACM)

Subject

Human-Computer Interaction

Reference14 articles.

1. Predicting non-traditional student learning outcomes using data analytics--a pilot research study;Buerck John P.;Journal of the Computer Science College,2013

2. Correlating skill and improvement in 2 MOOCs with a student's time on tasks

3. MOOCs and the funnel of participation

4. Learning in an introductory physics MOOC: All cohorts learn equally, including an on-campus class

5. Changing “Course”

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3