Hyperparameter Tuning with Gaussian Processes for Optimal Abstraction Control in Simulation-based Optimization of Smart Semiconductor Manufacturing Systems

Author:

Seok Moon Gi1,Tan Wen Jun2,Su Boyi2,Cai Wentong2,Kwon Jisu3,Choi Seon Han4

Affiliation:

1. Dept. of Computer Science and Engineering, Dongguk University, Seoul, South Korea

2. Sch. of Computer Science and Engineering, Nanyang Technological University, Singapore

3. Sch. of Electronic and Electrical Engineering, Kyungpook National University, Daegu, South Korea

4. Graduate Program in Smart Factory, Ewha Womans University, Seoul, South Korea

Abstract

Smart manufacturing utilizes digital twins that are virtual forms of their production plants for analyzing and optimizing decisions. Digital twins have been mainly developed as discrete-event models (DEMs) to represent the detailed and stochastic dynamics of productions in the plants. The optimum decision is achieved after simulating the DEM-based digital twins under various what-if decision candidates; thus, simulation acceleration is crucial for rapid optimum determination for given problems. For the acceleration of discrete-event simulations, adaptive abstraction-level conversion approaches have been previously proposed to switch active models of each machine group between a set of DEM components and a corresponding lookup table-based mean-delay model during runtime. The switching is decided by detecting the machine group’s convergence into (or divergence from) a steady state. However, there is a tradeoff between speedup and accuracy loss in the adaptive abstraction convertible simulation (AACS), and inaccurate simulation can degrade the quality of the optimum (i.e., the distance between the calculated optimum and the actual optimum). In this paper, we propose a simulation-based optimization (SBO) that optimizes the problem based on a genetic algorithm (GA) while tuning specific hyperparameters (related to the tradeoff control) to maximize the speedup of AACS under a specified accuracy constraint. For each individual, the proposed method distributes the overall computing budget for multiple simulation runs (considering the digital twin’s probabilistic property) into the hyperparameter optimization (HPO) and fitness evaluation. We propose an efficient HPO method that manages multiple Gaussian process models (as speedup-estimation models) to acquire promising optimal hyperparameter candidates (that maximize the simulation speedups) with few attempts. The method also reduces each individual’s exploration overhead (as the population evolves) by estimating each hyperparameter’s expected speedup using previous exploration results of neighboring individuals without actual simulation executions. The proposed method was applied to optimize raw-material releases of a large-scale manufacturing system to prove the concept and evaluate the performance under various situations.

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3