Delay tails in MapReduce scheduling

Author:

Tan Jian1,Meng Xiaoqiao1,Zhang Li1

Affiliation:

1. IBM T. J. Watson Research, Hawthorne, NY, USA

Abstract

MapReduce/Hadoop production clusters exhibit heavy-tailed characteristics for job processing times. These phenomena are resultant of the workload features and the adopted scheduling algorithms. Analytically understanding the delays under different schedulers for MapReduce can facilitate the design and deployment of large Hadoop clusters. The map and reduce tasks of a MapReduce job have fundamental difference and tight dependence between them, complicating the analysis. This also leads to an interesting starvation problem with the widely used Fair Scheduler due to its greedy approach to launching reduce tasks. To address this issue, we design and implement Coupling Scheduler, which gradually launches reduce tasks depending on map task progresses. Real experiments demonstrate improvements to job response times by up to an order of magnitude. Based on extensive measurements and source code investigations, we propose analytical models for the default FIFO and Fair Scheduler as well as our implemented Coupling Scheduler. For a class of heavy-tailed map service time distributions, i.e., regularly varying of index -a, we derive the distribution tail of the job processing delay under the three schedulers, respectively. The default FIFO Scheduler causes the delay to be regularly varying of index -a+1. Interestingly, we discover a criticality phenomenon for Fair Scheduler, the delay under which can change from regularly varying of index -a to -a+1, depending on the maximum number of reduce tasks of a job. Other more subtle behaviors also exist. In contrast, the delay distribution tail under Coupling Scheduler can be one order lower than Fair Scheduler under some conditions, implying a better performance.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Software

Reference27 articles.

1. Fair Scheduler http://hadoop.apache.org/mapreduce/docs/r0.21.0/fair_scheduler.html. Fair Scheduler http://hadoop.apache.org/mapreduce/docs/r0.21.0/fair_scheduler.html.

2. Capacity Scheduler http://hadoop.apache.org/mapreduce/docs/r0.21.0/capacity_scheduler.html. Capacity Scheduler http://hadoop.apache.org/mapreduce/docs/r0.21.0/capacity_scheduler.html.

3. The impact of the service discipline on delay asymptotics

4. The Case for Evaluating MapReduce Performance Using Workload Suites

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3