Sixteen Heuristics for Joint Optimization of Performance, Energy, and Temperature in Allocating Tasks to Multi-Cores

Author:

Sheikh Hafiz Fahad1,Ahmad Ishfaq1

Affiliation:

1. University of Texas at Arlington, Texas, USA

Abstract

Three-way joint optimization of performance ( P ), energy ( E ), and temperature ( T ) in scheduling parallel tasks to multiple cores poses a challenge that is staggering in its computational complexity. The goal of the PET optimized scheduling ( PETOS ) problem is to minimize three quantities: the completion time of a task graph, the total energy consumption, and the peak temperature of the system. Algorithms based on conventional multi-objective optimization techniques can be designed for solving the PETOS problem. But their execution times are exceedingly high and hence their applicability is restricted merely to problems of modest size. Exacerbating the problem is the solution space that is typically a Pareto front since no single solution can be strictly best along all three objectives. Thus, not only is the absolute quality of the solutions important but “the spread of the solutions” along each objective and the distribution of solutions within the generated tradeoff front are also desired. A natural alternative is to design efficient heuristic algorithms that can generate good solutions as well as good spreads -- note that most of the prior work in energy-efficient task allocation is predominantly single- or dual-objective oriented. Given a directed acyclic graph (DAG) representing a parallel program, a heuristic encompasses policies as to what tasks should go to what cores and at what frequency should that core operate. Various policies, such as greedy, iterative, and probabilistic, can be employed. However, the choice and usage of these policies can influence a heuristic towards a particular objective and can also profoundly impact its performance. This article proposes 16 heuristics that utilize various methods for task-to-core allocation and frequency selection. This article also presents a methodical classification scheme which not only categorizes the proposed heuristics but can also accommodate additional heuristics. Extensive simulation experiments compare these algorithms while shedding light on their strengths and tradeoffs.

Publisher

Association for Computing Machinery (ACM)

Subject

Computational Theory and Mathematics,Computer Science Applications,Hardware and Architecture,Modeling and Simulation,Software

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3