How to Choose the Best Pivot Language for Automatic Translation of Low-Resource Languages

Author:

Paul Michael1,Finch Andrew1,Sumita Eiichrio1

Affiliation:

1. National Institute of Information and Communications Technology

Abstract

Recent research on multilingual statistical machine translation focuses on the usage of pivot languages in order to overcome language resource limitations for certain language pairs. Due to the richness of available language resources, English is, in general, the pivot language of choice. However, factors like language relatedness can also effect the choice of the pivot language for a given language pair, especially for Asian languages, where language resources are currently quite limited. In this article, we provide new insights into what factors make a pivot language effective and investigate the impact of these factors on the overall pivot translation performance for translation between 22 Indo-European and Asian languages. Experimental results using state-of-the-art statistical machine translation techniques revealed that the translation quality of 54.8% of the language pairs improved when a non-English pivot language was chosen. Moreover, 81.0% of system performance variations can be explained by a combination of factors such as language family, vocabulary, sentence length, language perplexity, translation model entropy, reordering, monotonicity, and engine performance.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference17 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mixture-of-languages Routing for Multilingual Dialogues;ACM Transactions on Information Systems;2024-08-05

2. All Translation Tools Are Not Equal: Investigating the Quality of Language Translation for Forced Migration;2023 IEEE 10th International Conference on Data Science and Advanced Analytics (DSAA);2023-10-09

3. Research on Chinese-Lao Neural Machine Translation Based on Multi-Pivot;2023 2nd International Conference on Artificial Intelligence and Computer Information Technology (AICIT);2023-09-15

4. Low-resource Neural Machine Translation: Methods and Trends;ACM Transactions on Asian and Low-Resource Language Information Processing;2022-09-30

5. Word reordering on multiple pivots for the Japanese and Indonesian language pair;Machine Translation;2021-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3