Low-resource Neural Machine Translation: Methods and Trends

Author:

Shi Shumin1ORCID,Wu Xing1ORCID,Su Rihai1ORCID,Huang Heyan1ORCID

Affiliation:

1. School of Computer Scienceand Technology, Beijing Institute of Technology, China

Abstract

Neural Machine Translation (NMT) brings promising improvements in translation quality, but until recently, these models rely on large-scale parallel corpora. As such corpora only exist on a handful of language pairs, the translation performance is far from the desired effect in the majority of low-resource languages. Thus, developing low-resource language translation techniques is crucial and it has become a popular research field in neural machine translation. In this article, we make an overall review of existing deep learning techniques in low-resource NMT. We first show the research status as well as some widely used low-resource datasets. Then, we categorize the existing methods and show some representative works detailedly. Finally, we summarize the common characters among them and outline the future directions in this field.

Funder

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference116 articles.

1. Learning bilingual word embeddings with (almost) no bilingual data

2. An effective approach to unsupervised machine translation;Artetxe Mikel;arXiv preprint arXiv:1902.01313,2019

3. Translation artifacts in cross-lingual transfer learning;Artetxe Mikel;arXiv preprint arXiv:2004.04721,2020

4. Unsupervised neural machine translation;Artetxe Mikel;arXiv preprint arXiv:1710.11041,2017

5. Neural machine translation by jointly learning to align and translate;Bahdanau Dzmitry;arXiv preprint arXiv:1409.0473,2014

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3