An adaptive, non-uniform cache structure for wire-delay dominated on-chip caches

Author:

Kim Changkyu1,Burger Doug1,Keckler Stephen W.1

Affiliation:

1. The University of Texas, Austin

Abstract

Growing wire delays will force substantive changes in the designs of large caches. Traditional cache architectures assume that each level in the cache hierarchy has a single, uniform access time. Increases in on-chip communication delays will make the hit time of large on-chip caches a function of a line's physical location within the cache. Consequently, cache access times will become a continuum of latencies rather than a single discrete latency. This non-uniformity can be exploited to provide faster access to cache lines in the portions of the cache that reside closer to the processor. In this paper, we evaluate a series of cache designs that provides fast hits to multi-megabyte cache memories. We first propose physical designs for these Non-Uniform Cache Architectures (NUCAs). We extend these physical designs with logical policies that allow important data to migrate toward the processor within the same level of the cache. We show that, for multi-megabyte level-two caches, an adaptive, dynamic NUCA design achieves 1.5 times the IPC of a Uniform Cache Architecture of any size, outperforms the best static NUCA scheme by 11%, outperforms the best three-level hierarchy--while using less silicon area--by 13%, and comes within 13% of an ideal minimal hit latency solution.

Publisher

Association for Computing Machinery (ACM)

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Characterizing a Memory Allocator at Warehouse Scale;Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 3;2024-04-27

2. edAttack: Hardware Trojan Attack on On-Chip Packet Compression;IEEE Design & Test;2023-12

3. Affinity Alloc: Taming Not-So Near-Data Computing;56th Annual IEEE/ACM International Symposium on Microarchitecture;2023-10-28

4. ZPP: A Dynamic Technique to Eliminate Cache Pollution in NoC based MPSoCs;ACM Transactions on Embedded Computing Systems;2023-09-09

5. DeepNR: An adaptive deep reinforcement learning based NoC routing algorithm;Microprocessors and Microsystems;2022-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3