A Joint Passenger Flow Inference and Path Recommender System for Deploying New Routes and Stations of Mass Transit Transportation

Author:

Lin Fandel1,Hsieh Hsun-Ping1ORCID

Affiliation:

1. National Cheng Kung University, Taiwan

Abstract

In this work, a novel decision assistant system for urban transportation, called Route Scheme Assistant (RSA), is proposed to address two crucial issues that few former researches have focused on: route-based passenger flow (PF) inference and multivariant high-PF route recommendation. First, RSA can estimate the PF of arbitrary user-designated routes effectively by utilizing Deep Neural Network (DNN) for regression based on geographical information and spatial-temporal urban informatics. Second, our proposed Bidirectional Prioritized Spanning Tree (BDPST) intelligently combines the parallel computing concept and Gaussian mixture model (GMM) for route recommendation under users’ constraints running in a timely manner. We did experiments on bus-ticket data of Tainan and Chicago and the experimental results show that the PF inference model outperforms baseline and comparative methods from 41% to 57%. Moreover, the proposed BDPST algorithm's performance is not far away from the optimal PF and outperforms other comparative methods from 39% to 71% in large-scale route recommendations.

Funder

Ministry of Science and Technology (MOST) of Taiwan

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference73 articles.

1. A Hub-Based Labeling Algorithm for Shortest Paths in Road Networks

2. Spatio-temporal low count processes with application to violent crime events;Aldor Sivan;Statistica Sinica,2016

3. Personalized and content adaptive cultural heritage path recommendation: an application to the Gournia and Çatalhöyük archaeological sites

4. Lecture Notes in Computer Science;Bast Hannah

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3