Affiliation:
1. National Cheng Kung University, Taiwan
Abstract
In this work, a novel decision assistant system for urban transportation, called Route Scheme Assistant (RSA), is proposed to address two crucial issues that few former researches have focused on: route-based passenger flow (PF) inference and multivariant high-PF route recommendation. First, RSA can estimate the PF of arbitrary user-designated routes effectively by utilizing Deep Neural Network (DNN) for regression based on geographical information and spatial-temporal urban informatics. Second, our proposed Bidirectional Prioritized Spanning Tree (BDPST) intelligently combines the parallel computing concept and Gaussian mixture model (GMM) for route recommendation under users’ constraints running in a timely manner. We did experiments on bus-ticket data of Tainan and Chicago and the experimental results show that the PF inference model outperforms baseline and comparative methods from 41% to 57%. Moreover, the proposed BDPST algorithm's performance is not far away from the optimal PF and outperforms other comparative methods from 39% to 71% in large-scale route recommendations.
Funder
Ministry of Science and Technology (MOST) of Taiwan
Publisher
Association for Computing Machinery (ACM)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献