Learning to Generate Temporal Origin-destination Flow Based-on Urban Regional Features and Traffic Information

Author:

Rong Can1ORCID,Liu Zhicheng1ORCID,Ding Jingtao1ORCID,Li Yong2ORCID

Affiliation:

1. Beijing National Research Center for Information Science and Technology (BNRist), Department of Electronic Engineering, Tsinghua University, Beijing, China

2. Beijing National Research Center for Information Science and Technology (BNRist), Department of Electronic Engineering, Tsinghua University, Beijing, China

Abstract

Origin-destination (OD) flow contains population mobility information between every two regions in the city, which is of great value in urban planning and transportation management. Nevertheless, the collection of OD flow data is extremely difficult due to the hindrance of privacy issues and collection costs. Significant efforts have been made to generate OD flow based on urban regional features, e.g., demographics, land use, and so on, since spatial heterogeneity of urban function is the primary cause that drives people to move from one place to another. On the other hand, people travel through various routes between OD, which will have effects on urban traffic, e.g., road travel speed and time. These effects of OD flows reveal the fine-grained spatiotemporal patterns of population mobility. Few works have explored the effectiveness of incorporating urban traffic information into OD generation. To bridge this gap, we propose to generate real-world daily temporal OD flows enhanced by urban traffic information in this paper. Our model consists of two modules: Urban2OD and OD2Traffic . In the Urban2OD module, we devise a spatiotemporal graph neural network to model the complex dependencies between daily temporal OD flows and regional features. In the OD2Traffic module, we introduce an attention-based neural network to predict urban traffic based on OD flow from the Urban2OD module. Then, by utilizing gradient backpropagation, these two modules are able to enhance each other to generate high-quality OD flow data. Extensive experiments conducted on real-world datasets demonstrate the superiority of our proposed model over the state of the art.

Publisher

Association for Computing Machinery (ACM)

Reference56 articles.

1. Real-Time Large-Scale Map Matching Using Mobile Phone Data

2. Human mobility: Models and applications

3. Spatial networks

4. Michael Behrisch, Laura Bieker, Jakob Erdmann, and Daniel Krajzewicz. 2011. SUMO–simulation of urban mobility: An overview. In Proceedings of SIMUL 2011, The Third International Conference on Advances in System Simulation. ThinkMind.

5. The distance-decay function of geographical gravity model: Power law or exponential law?

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3