Analysis of benchmark characteristics and benchmark performance prediction

Author:

Saavedra Rafael H.1,Smith Alan J.2

Affiliation:

1. Univ. of Southern California, Los Angeles

2. Univ. of California, Berkeley

Abstract

Standard benchmarking provides to run-times for given programs on given machines, but fails to provide insight as to why those results were obtained (either in terms of machine or program characteristics) and fails to provide run-times for that program on some other machine, or some other programs on that machine. We have developed a machine-imdependent model of program execution to characterize both machine performance and program execution. By merging these machine and program characterizations, we can estimate execution time for arbitrary machine/program combinations. Our technique allows us to identify those operations, either on the machine or in the programs, which dominate the benchmark results. This information helps designers in improving the performance of future machines and users in tuning their applications to better utilize the performance of existing machines. Here we apply our methodology to characterize benchmarks and predict their execution times. We present extensive run-time statistics for a large set of benchmarks including the SPEC and Perfect Club suites. We show how these statistics can be used to identify important shortcoming in the programs. In addition, we give execution time estimates for a large sample of programs and machines and compare these against benchmark results. Finally, we develop a metric for program similarity that makes it possible to classify benchmarks with respect to a large set of characteristics.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference32 articles.

1. Compiler transformations for high-performance computing

2. BAILEY D. H. AND BARTON J.T. 1985. The NAS kernel benchmark program. NASA Tech. Memo. 86711 NASA Ames Iowa. Aug. BAILEY D. H. AND BARTON J.T. 1985. The NAS kernel benchmark program. NASA Tech. Memo. 86711 NASA Ames Iowa. Aug.

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3