Affiliation:
1. School of Computer Science, Wuhan University, Wuhan, Hubei 430072, P. R. China
2. School of Computer and Information Science, Hubei Engineering University, Xiaogan, Hubei 432000, P. R. China
Abstract
Establishment of a performance evaluation model is a hotspot of current research. In this paper, the performance bottleneck is analyzed quantitatively, which provided programmers with a guidance to optimize the performance bottleneck. This paper takes a matrix as an example; the matrix is divided into a dense matrix or a sparse matrix. For dense matrix, the performance is first analyzed in a quantitative way, and an evaluation model is developed, which includes the instruction pipeline, shared memory, and global memory. For sparse matrix, this paper aims at the four formats of CSR, ELL, COO, and HYB, through the observation data obtained from the actual operation of large datasets, finds the relationship between the running time, dataset form, and storage model, and establishes their relational model functions. Through practical test and comparison, the error between the execution time of the test dataset that is predicted by the model function and the actual running time is found to be within a stable finite deviation threshold, proving that the model has certain practicability.
Funder
National Science Youth Foundation
Hubei Provincial Department of Education
Hubei Engineering University project
Publisher
World Scientific Pub Co Pte Ltd
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献