Principal Type Schemes for Gradual Programs

Author:

Garcia Ronald1,Cimini Matteo2

Affiliation:

1. University of British Columbia, Vancouver, BC, Canada

2. Indiana University, Bloomington, IN, USA

Abstract

Gradual typing is a discipline for integrating dynamic checking into a static type system. Since its introduction in functional languages, it has been adapted to a variety of type systems, including object-oriented, security, and substructural. This work studies its application to implicitly typed languages based on type inference. Siek and Vachharajani designed a gradual type inference system and algorithm that infers gradual types but still rejects ill-typed static programs. However, the type system requires local reasoning about type substitutions, an imperative inference algorithm, and a subtle correctness statement. This paper introduces a new approach to gradual type inference, driven by the principle that gradual inference should only produce static types. We present a static implicitly typed language, its gradual counterpart, and a type inference procedure. The gradual system types the same programs as Siek and Vachharajani, but has a modular structure amenable to extension. The language admits let-polymorphism, and its dynamics are defined by translation to the Polymorphic Blame Calculus. The principal types produced by our initial type system mask the distinction between static parametric polymorphism and polymorphism that can be attributed to gradual typing. To expose this difference, we distinguish static type parameters from gradual type parameters and reinterpret gradual type consistency accordingly. The resulting extension enables programs to be interpreted using either the polymorphic or monomorphic Blame Calculi.

Funder

National Science Foundation

Natural Sciences and Engineering Research Council of Canada

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gradually structured data;Proceedings of the ACM on Programming Languages;2021-10-20

2. Putting Gradual Types to Work;Practical Aspects of Declarative Languages;2021

3. Type Inference for Rank 2 Gradual Intersection Types;Lecture Notes in Computer Science;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3